Environmental Management of Asthma: Home Ventilation and Filtration

The majority of figures and images used in this healthy housing workshop were used with permission from the Building Performance Institute. Some of the materials were originally produced by the National Center for Healthy Housing through grant support from HUD Office of Lead Hazard Control and Healthy Homes, and the Co-agency Asthma Education slide deck developed for Asthma Management Training.

More details here: https://www.cdc.gov/asthma/

Healthy Indoors Training, LLC Lawrence, Kansas

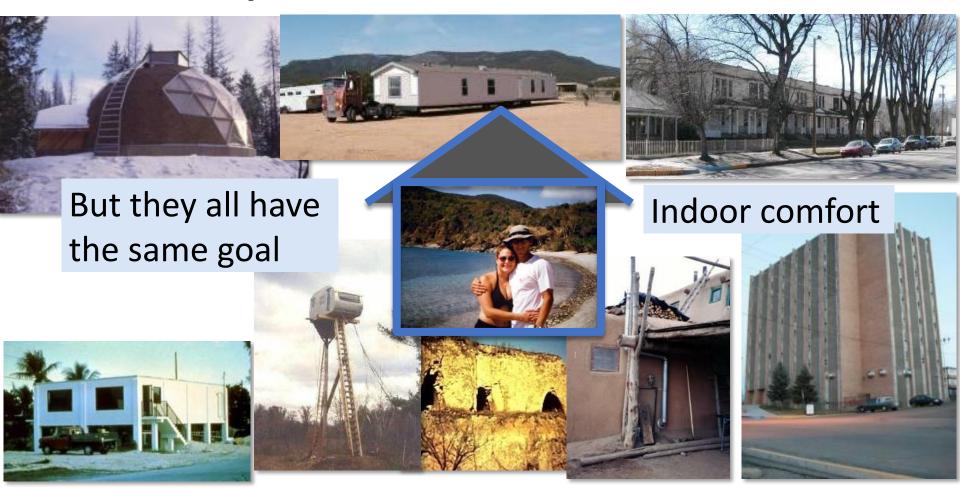
Best practices for using these google slides

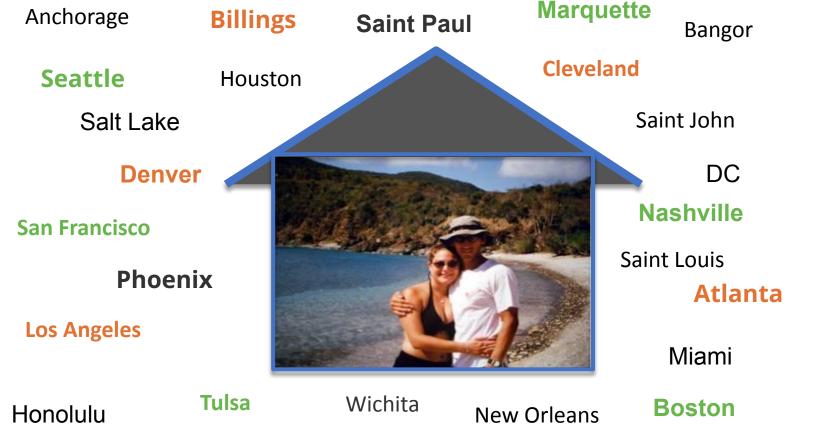
- DO NOT DOWNLOAD THESE SLIDES!
- You will get copies of the slides after the workshop.
- In google slides you have edit rights so BE CAREFUL what you click.
- If something gets deleted, I may ask you to use the following keystrokes:
 - a. Windows computers Ctrl-Z
 - b. Apple computers Cmd-Z

This will restore any items accidentally deleted.

I may ask you do this several times.

Who Am I?


Kevin Kennedy, MPH, CIEC


- 30 years' experience as an environmental health scientist
- 21 years' working at Children's Mercy Kansas City (CMKC)
- Our program has assessed thousands of homes and schools, providing patient families, childcares, and schools
- Our program received over \$7million in program and research grants
- I've been part of 9 HUD(4 Healthy Home Program Grants, 5 HUD research grants) and many more pubic and private.
- I am a co-author on more than 50 academic research publications
- I am the primary author of the BPI Healthy Housing Principles Reference Guide (used for this class)
- I teach professional courses in environmental health assessment and investigations, environmental measurement and sampling, building science, and general healthy homes science and research.
- I am a Certified Indoor Environmental Consultant
- I have previously worked as an environmental analytical chemist, research scientist in extractive metallurgy, historic home restoration carpenter and woodworker.

More information on my website here:

Many kinds of shelter serve as homes

Homes everywhere are designed to provide the same indoor environmental conditions no matter where they are

Homes shelter us from:

Wind

Rain (sleet, snow)

Cold or hot air

Dust

Animals and insects

Most of us are comfortable in these ranges:

Air temperature: 65° F(active) – 80° F (bathing)

Air relative humidity: 30% – 60%

Air motion: 20 – 40 feet per minute

Surrounding surface temperatures: within 10 – 15°F of room air

Kevin believes all home visitors should promote:

Healthy
Home
"Keep it"
Principles

Maintained

Homes are Systems

- "Fire"- heat transfers drive air flow
- "Air" air movement creates pressure differences
- "Water"- moves from wet to dry
- "Earth" dust infiltrates and circulates with air movement

Particulate Matter, or breathable dust, can bypass natural defenses in our airways

Fine particulate are from 0.1 μ m to 10 μ m in size

PM2.5 means 2.5μm particles these are inhaled deep into our lungs

Ultrafine particulate are $< 0.1 \mu m$ in size. This size can pass directly into the bloodstream

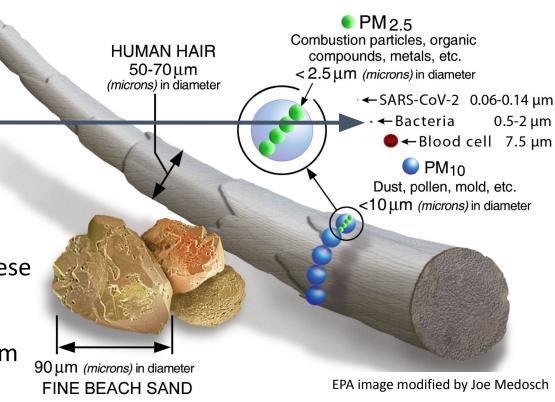
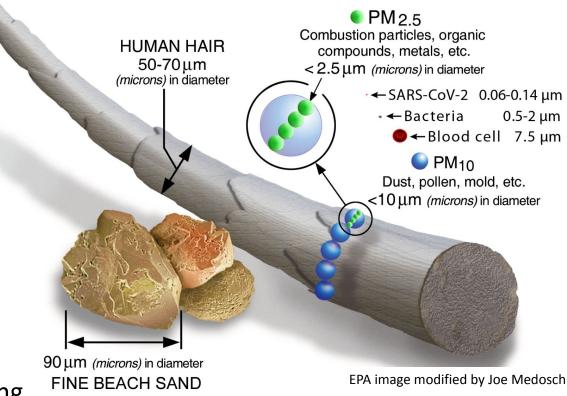


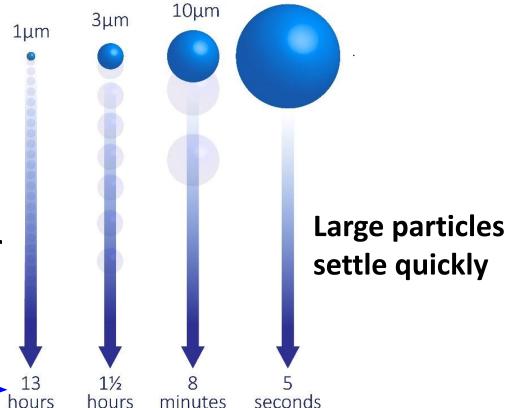
Image ©2020 Building Performance Institute

There are major health effects known to be associated with fine particulate exposure

 Premature death in people with heart or lung disease

- Nonfatal heart attacks
- Irregular heartbeat
- Aggravated asthma
- Decreased lung function
- Irritation of the airways
- Coughing, difficulty breathing



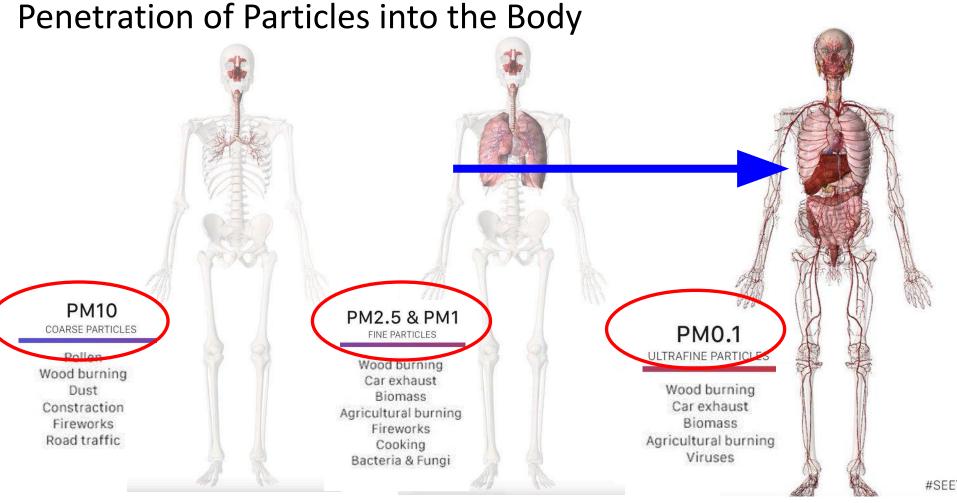

Image ©2020 Building Performance Institute

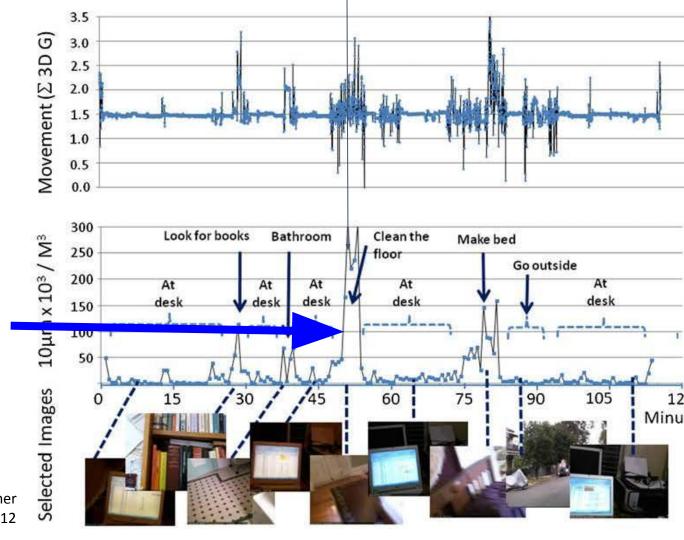
Airborne particles are different sizes and this affects how long they remain in the air

> **Small particles** stay in the air for hours

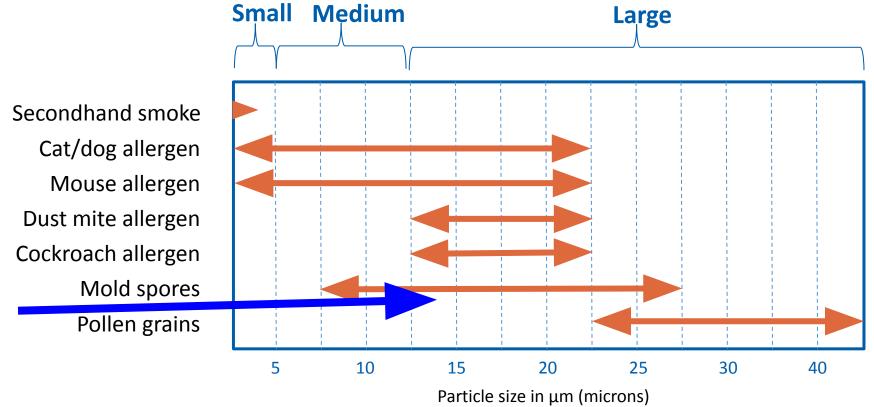
Time to settle from 5 i

100 µm


This slide is part of the Co-agency Asthma Education slide deck developed for Asthma Management Training. More details here: https://www.cdc.gov/asthma/



https://seetheair.files.wordpress.com/2021/03/particle-penetration.jpg


We all have a personal pollution "cloud"

Tovey & Ferro, Time for New Methods for Avoidance of House Dust Mite and Other Allergens, Curr Allergy Asthma Rep, 2012

Size range of asthma trigger particles in air

This slide is part of the Co-agency Asthma Education slide deck developed for Asthma Management Training. More details here: https://www.cdc.gov/asthma/

Pests: Allergen characteristics

Mouse and rat allergens

- Mainly urine (but also in dander)
- Airborne allergens on a range of microscopic particles (<10 and ≥10 microns).
- •Can remain airborne for hours.

Cockroach allergens

- Mainly fecal pellets (but also in dried body parts).
- Airborne allergens on larger, but still microscopic particles (mainly >10 microns).
- Settle out of air quickly.

Dust mites are tiny (microscopic) organisms that live in the dust of both humid and dry buildings.

- Eat mostly skin flakes or dander from humans and animals
- Need <u>higher</u> amounts of moisture and humidity to survive and thrive
- Inhabit woven fabrics, carpeting, upholstered furniture and stuffed animals
- ~80% of US homes have dust mite allergen in bedrooms**

Yucky video of dust mites Are you ready?
https://www.youtube.com/watc
h?v= vlsxTB9dHg

Images ©2020 Building Performance Institute

(Dust mites magnified 5000 times.)

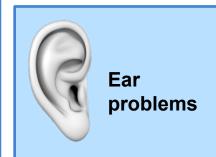
Dust mite allergen characteristics

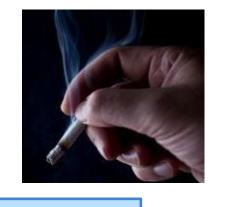
Dust mite allergen

- Mainly droppings (fecal pellets)
- Airborne particles > 10 microns
- Settle out of air quickly
- Mainly exposed by breathing near surfaces with dust mites
- Not easily transferred passively (e.g. from clothes to sofa)
- Mainly found in soft fabric furnishings

Second-hand smoke, or Environmental Tobacco Smoke is a significant hazard:

- Adult health effects
 - Well known to cause cancer and major respiratory diseases
- Children's health effects
 - Associated with asthma development and exacerbation of symptoms
- "Third hand smoke" is the chemical residues that absorb into home contents and off-gas into the air for years unless deep cleaning


Additional health effects of environmental tobacco smoke include:



- Acute respiratory infections
- More severe asthma
- Lung cancer
- Chronic Obstructive Pulmonary Disease
- Pneumonia
- Emphyzema
- Bronchitis

Coronary heart disease

Sudden Infant Death Syndrome (SIDS)

No matter the source, smoke is a health hazard

- Electronic Cigarettes
 - Diacetyl
- Wild Fires
- Wood smoke
- Marijuana

Exercise! Apply what we learned

You are visiting the Miller's home. Their daughter, Jessica, has asthma and is allergic to allergens from dust mites, grass pollen, and cats.

- Work in small groups.
- Review the the photo of Jessica's bedroom
- Discuss possible sources of particles you observe in the room

Your breakout room number should match the group number on the exercise slide

Group Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sou Sources of particles you observe

Group #1 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Possible pet @ top left corner

Linens on bed mostly likely have dust mites

Scattered clothing piles collecting particles

Dust in books

Dust under shoe

Healthy Indoors Training, LLC Lawrence, Kansas

Group #2 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Lack of ventilation

Inability to dust/ vacuum

Accumulation of items that aren't being thoroughly cleaned

Dust/ particles from the window

Dust/ particles from the vents or blockage of

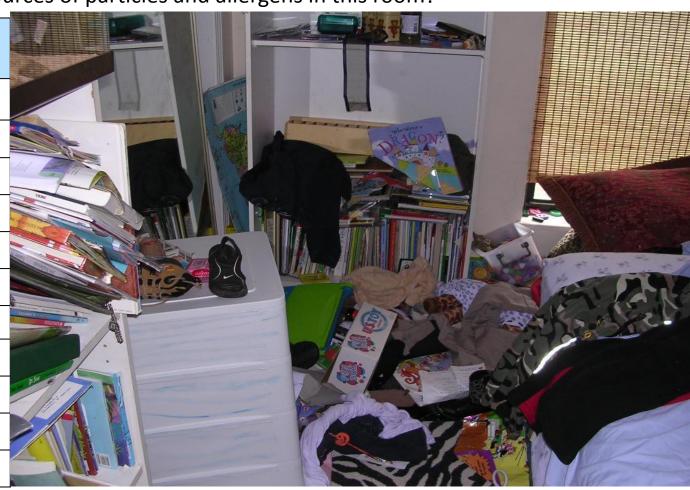
Hamster

Group #3 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

dust mites

window shades


clothes

bedding

book shelves

items in the corner room (clutter)

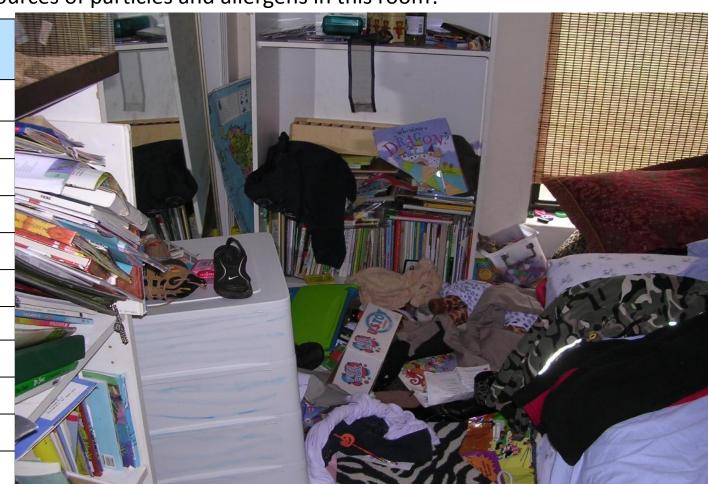
papers

Group #4 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Dust mites

Pests- ants, cockroaches


Pollution outside

Poor ventilation

Group #6 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Group #7 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

dust mites

Lack of Ventilation

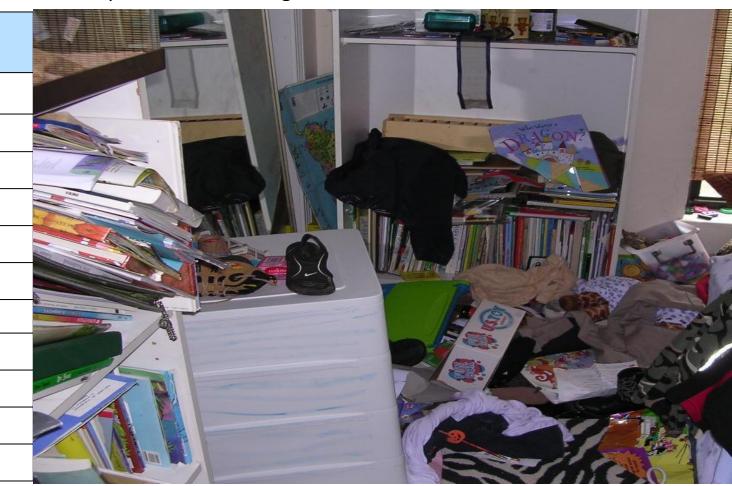
clutter

linens / bedding/ pillows

Group #8 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

woven articles


outdoor clothes on bed

clutter, hard to clean

closed window

shoes on top of furniture

animal cage?


Group #9 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

clutter

Dark, lack of ventilation

Moisture source - curtains pulled down

Group #10 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom.

What are some likely sour

Sources of particles you observe

clutter

open windows, ventilatation

vacuum

pet cage

Healthy Indoors Training, LLC Lawrence, Kansas

Group #11 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Group #5 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Clutter

Dust Mites

shoes, clothes

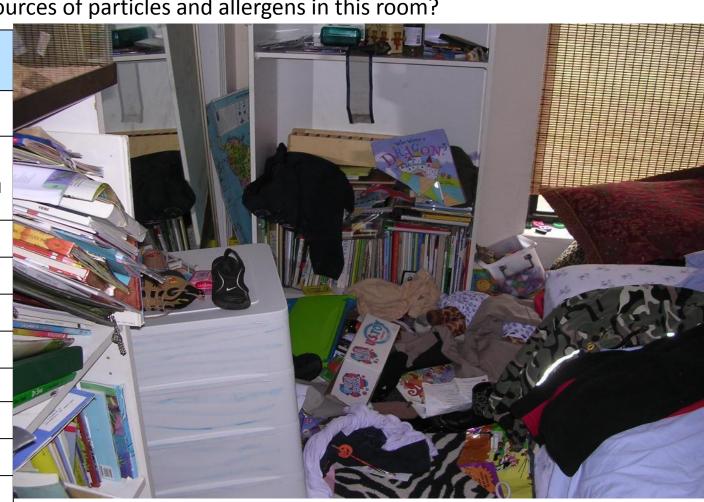
Trash

Books

lack of air flow

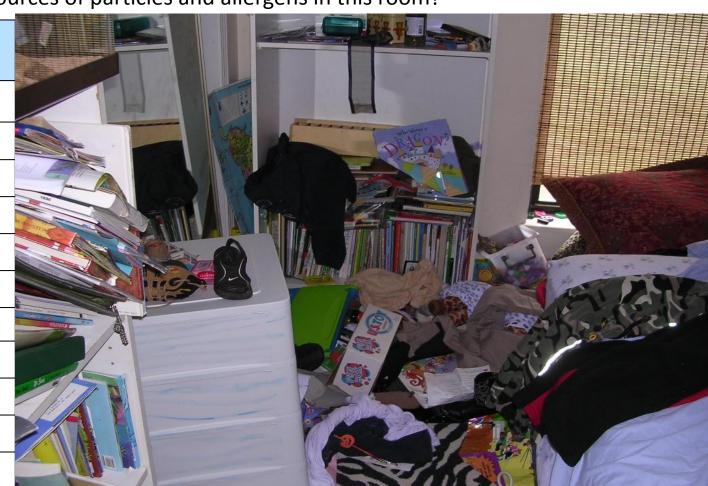
No clear path

Dirt


Group #12 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Because of all the stuff it will be very hard to vacuum or wash the bedding.


There are a lot of surfaces that will collect dust the papers should be in cabinets or boxes. The clothes should be in drawers.

Lack of air flow (

Group #13 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

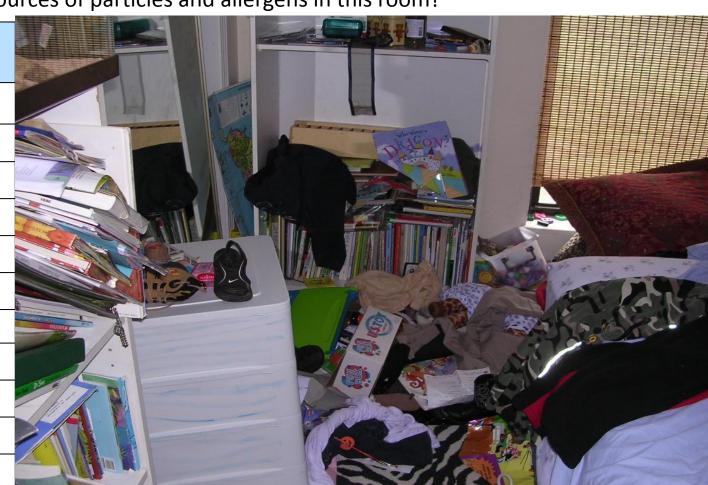
Group #14 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Clothes on bed and floor

Shoe on top of cubby

Toys near the corner of the window (if it has been left there for awhile)


Clutter of books on shelves

Clutter on the floor (carpet flooring?)

Group #15 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Group #16 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Group #17 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Cludder

Book pages and stacks

Curtains

Clothing

Sheets and pillows

Carpet

Ventilation (closed windows)

Group #18 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

Group #19 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

airborne

safety hazard

dust

pest

ventilation issues

Group #20 Exercise: You're visiting the Miller's home. This is their daughter Jessica's bedroom. What are some likely sources of particles and allergens in this room?

Sources of particles you observe

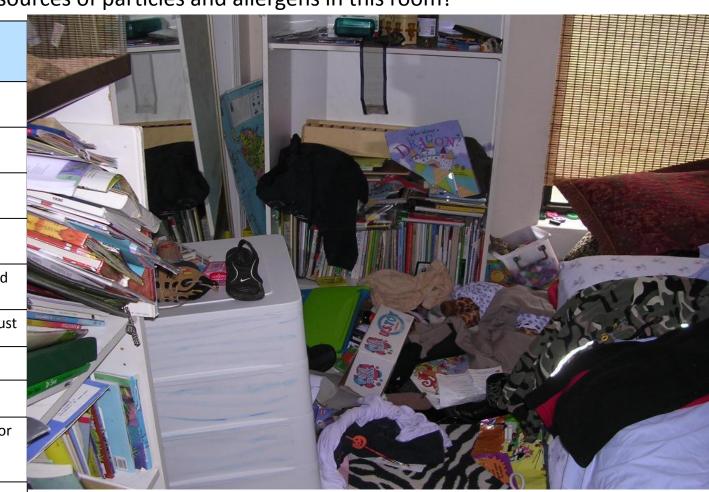
dust/dust mites - hard to clean, cluttered

window covers - dust build up and prevents ventilation

hard to detect issues with mold or moisture

shoe inside - might be tracking dirt and pollen into bedroom

many many books/paper - fibers and paper filaments airborne


pillow cover - might be harboring dust

pet cage - chemical offgassing?

depression/stress

bed and bookcase up against exterior

exposing wall without space -ventilation issues.

Let's talk about a Healthy Home Principle that includes strategies for managing breathable particles and gases

Keep it Ventilated

Clean

Dry

Pest-Free

Contaminant-Free

Safe

Ventilated

Comfortable

Maintained

Healthy Indoors Training, LLC Lawrence, Kansas

There are 3 primary mechanisms that drive airflow, ventilation, and circulation in homes

Stack Effect-

Air flow associated with heat and thermal transfer

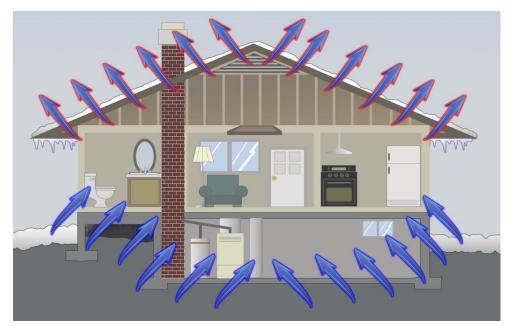
Wind Effect-

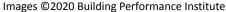
Air flow associated with wind and air currents from outside the building

Passive Ventilation

Mechanical and other forms of ventilation-

Air flow associated with mechanical systems and different fans that either move air out of a house, into a house, or around a house.


Active Ventilation



Key concepts for understanding air movement and ventilation in homes

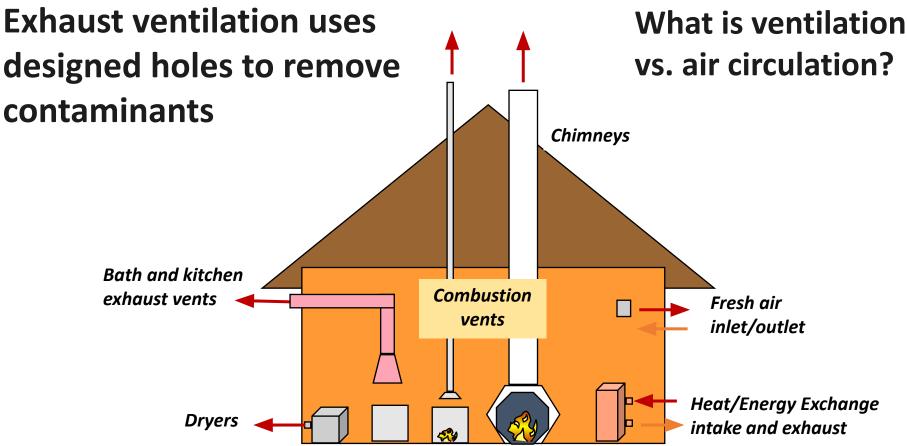
Stack Effect - Warm air in homes rises up and out of the house through points of exfiltration. As this happens, it creates pressure that draws an equal amount of cooler air from outside in from areas around the bottom through any cracks, gaps, or openings.

Stack Effect

Another key concept that impacts air movement and ventilation in homes - the wind outside

Wind Effect

Wind Effect - wind can enter through a drafty window on one side of a house. When this happens, an equal amount of air exits through an opening elsewhere.


Images ©2020 Building Performance Institute

Good ventilation is critical for maintaining good air quality in homes

Ventilation helps reduce the build-up of these contaminants in homes

- Airborne molds & pollens
- Breathable particles
- Allergens
- Carbon Monoxide (CO)
- Environmental Tobacco Smoke
- Moisture
- Nitrogen Dioxide (NO₂)
- Volatile Organic Compounds
- Carbon Dioxide (CO₂)

There are areas in the home that need exhaust ventilation known as "spot ventilation"

Use a combustion fuel

- Gas furnaces & boilers
- Gas water heaters
- Fireplaces, wood burning stoves
- Gas clothes dryers
- Gas stoves and ranges

Use electricity as "fuel"

- Bathrooms
- Electric clothes dryers
- Electric stoves and ranges

These are common systems that create combustion byproducts from burning fuels

- Gas furnaces & boilers
- Gas water heaters
- Fireplaces, wood burning stoves
- Gas clothes dryers
- Gas stoves and ranges

All require exhaust ventilation

Poor ventilation is known to be associated with specific health impacts

- Respiratory irritation
- Common colds
- Influenza
- Pneumonia
- Bronchitis
- Increased allergy symptoms
- Increased asthma symptoms

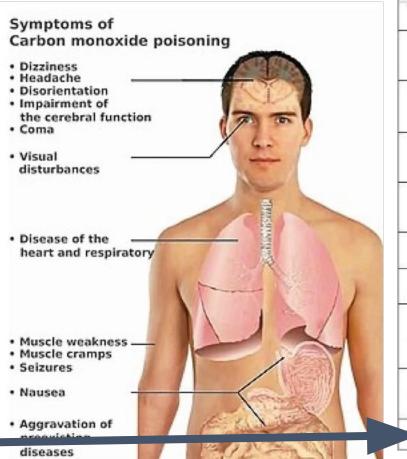
Image ©2020 Building Performance Institute

When fuels are burned, **combustion by-products** are generated. Two of these have well-known health effects

Carbon Monoxide (CO)

- Fatigue, headaches, dizziness, confusion, unconsciousness, death
- The "Silent Killer"

Nitrogen Dioxide (NO₂)


- Eye, nose, and throat irritation
- Shortness of breath

Here's a summary of the health effects from carbon monoxide poisoning

∄РМ	% CO in air	Health Effects in Healthy Adults	Source/Comments	
0	0%	no effects; this is the normal level in a properly operating heating appliance		
35	.0035%	maximum allowable workplace exposure limit for an eight-hour work shift The National Institute of Occupational Safety and Health (NIOSH)		
50	.005%	maximum allowable workplace 6 exposure limit for an eight-hour work shift		
100	.01%	slight headache, fatigue, shortness of breath, errors in judgment	workplace alarm must sound (OSHA)	
125	.0125%			
200	.02%	headache, fatigue, nausea, dizziness		
400	.04%	severe headache, fatigue, nausea, dizziness, confusion; can be life-threatening after three hours of exposure	evacuate area immediately	
800	.08%	convulsions, loss of consciousness; death within three hours.	evacuate area	
2,000	1.2%	nearly instant death		

These are other common uncontrolled sources of combustion byproducts

- Car exhaust from attached garage
- **Spillage** from furnace, water heater, fireplace
- Oven as heater
- Ventless heaters & fireplaces

Image ©2020 Building Performance Institute

Image from the National Center for Healthy Homes

Sometimes when rooms are under too much negative air pressure, this can cause backdrafting of combustion appliances

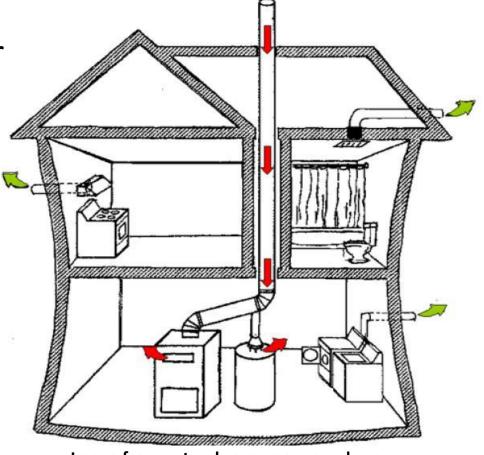
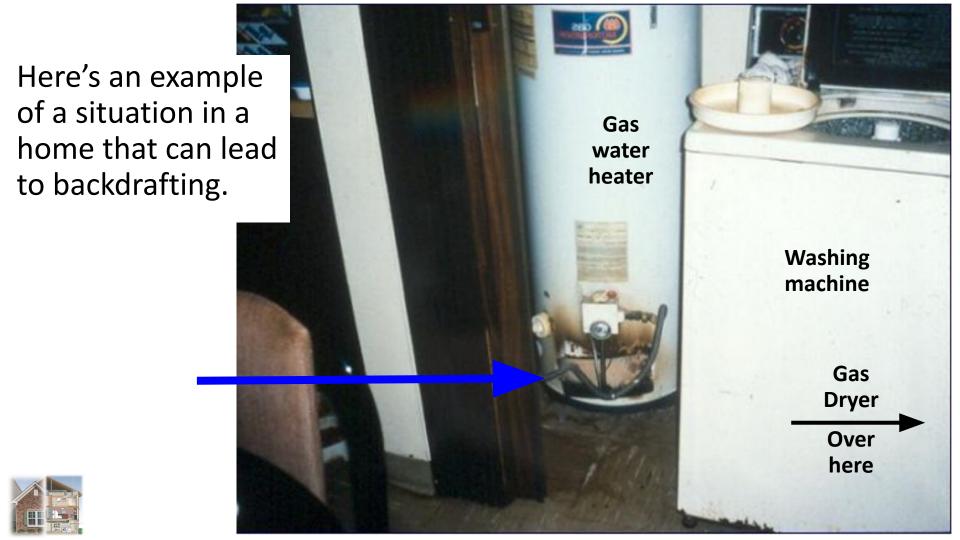



Image from natural-resources.canada.ca

Kitchens are one of the main locations in homes where chemicals and pollutants are created

Every time we cook food on a stove or in the oven we create: Moisture, particles, smoke, chemicals and odors

If we cook with a combustion gas, we create:
Carbon monoxide (CO),
nitrogen dioxide (NO2), and
other hazardous chemicals

Kitchens need good exhaust fans ventilation) to eliminate unwanted moisture, odors, grease, and chemicals

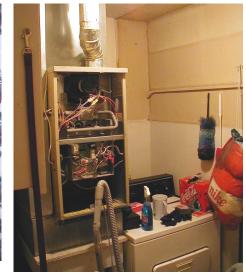
Kitchens exhaust fans should have a duct that exhausts all the way to the outside of the house. You can usually see the duct inside the cabinet

Kitchens exhaust fans should be left on for 20 minutes after cooking to eliminate any smoke and other cooking chemicals

Many kitchens have an exhaust fan, but they often do a poor job of capturing smoke and odors from cooking

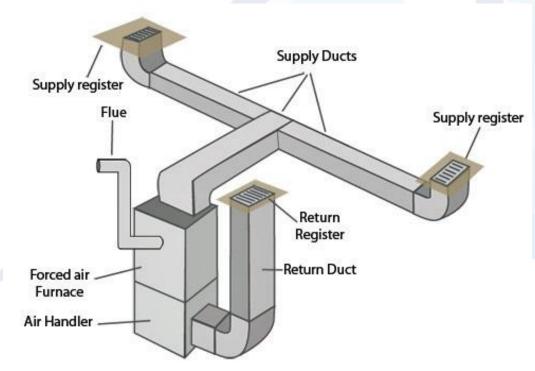
Exhaust hood built into microwave

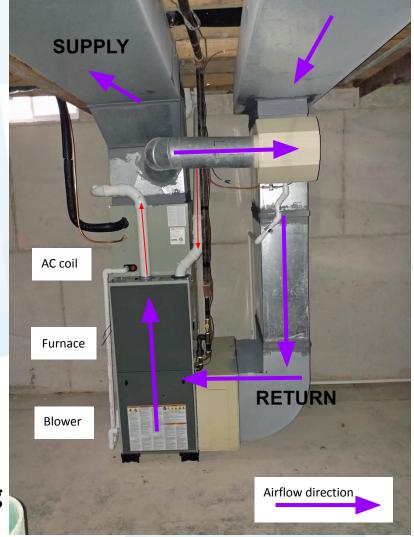
Always test fan to see if it works and how noisy it is

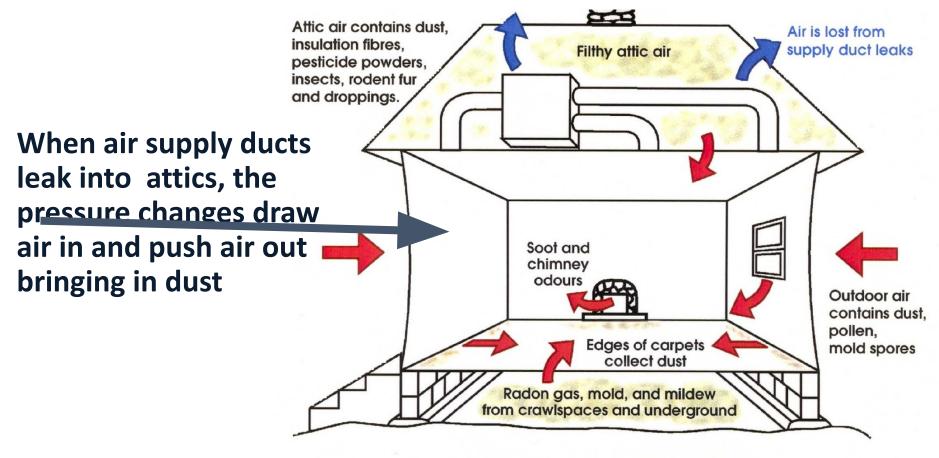

Capture Efficiency

When visiting homes, look for both obvious and not so obvious indoor combustion sources

- Gas furnaces and water heaters
- Gas stoves and clothes dryers
- Gas/fuel space heaters
- Ventless heaters
- Candles and incense
- Other sources of smoke





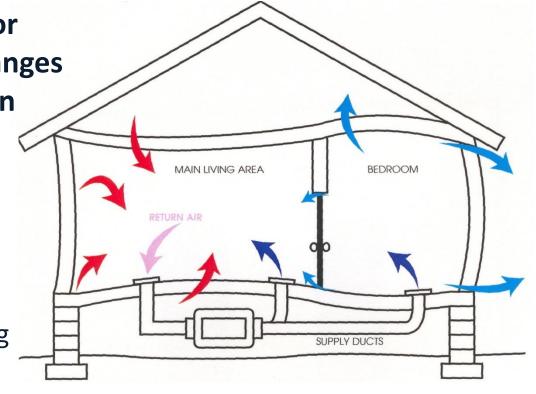


Forced air distribution is the most common HVAC system found in homes

HVAC = Heating Ventilation Air Conditioning

Supply Leaks "Depressurize" Your Entire House

(air going out must be replaced by air coming in)
From, "Healthy Home Guy", https://www.healthyhomeguy.com

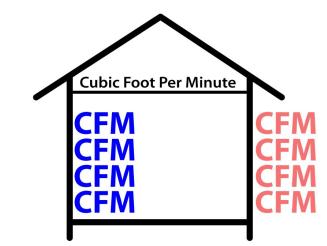

In some houses, closing interior doors can lead to pressure changes that "unbalance" air circulation

House has single central return vent

- Closed door ends up blocking return air
- Bedroom now has very positive pressure while living room is "starved" for air
- The "make-up" air is drawn from everywhere else

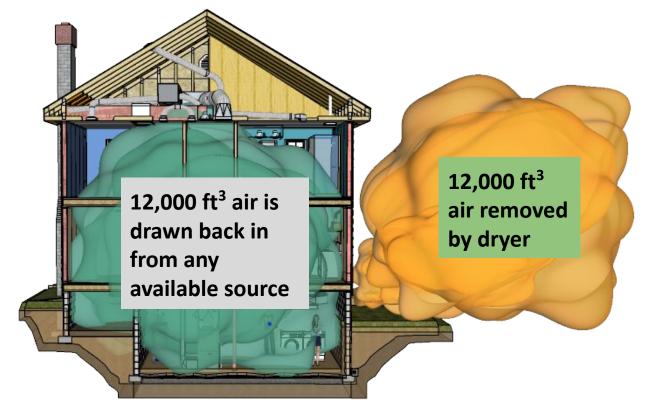

Symptoms indicating problem include uneven temperatures, excessively dry in winter, cold and clammy in the summer, dust staining around rug or carpet edges, smoky fireplaces and soot odors

From, "How Your House Works", Charlie Wing ©2007, Reed Construction Data. *Used with permission*.



Fans - Represent a major driving force that can cause uncontrolled air infiltration

Device	CFM
Bath	50 -150
Range hood	150
Downdraft hood	400-600
"Emeril" Hood	1500
Dryer	200
Air Handler	400 / ton



©2018 Joe Medosch

Running your clothes dryer impacts air pressures and can enhance exposure pathways

Moisture removed 3 lbs (1.4 kg)
Dryer 200 CFM (.024 M³/s) 12,000 ft³ (340 m³)

Typical run time 60 min.

10' X 10' = 100 ft² X 8' ceiling = 800 ft³

Filters have a common rating system for determining their efficiency at removing particles from the air.

Minimum
Efficiency
Rating Value
(MERV)

ASHRAE Standard 52.2 **Testing General Ventilation**

Air-cleaning Devices for

Removal Efficiency by particle size

	microns	microns	microns	Rating	Filter F	
Fiberglass & Aluminum Mesh	< 20%	< 20 %	< 20 %		MERV 1	
	< 20 %	< 20 %	< 20 %	}	MERV 2	
Pollen, Dust Mites, Spray Paint, Carpet Fibres	< 20 %	< 20 %	< 20 %		MERV 3	
	< 20 %	< 20 %	< 20 %		MERV 4	
Disposable Filters Mold Spores, Cooking Dusts, Hair Spray, Furniture Polish	< 20 %	< 20 %	20 % - 34 %	}	MERV 5	
	< 20 %	< 20 %	35 % - 49 %	}	MERV 6	
	< 20 %	< 20 %	50 % - 69 %		MERV 7	
	< 20 %	< 20 %	70 % - 85 %	FPR 5	MERV 8	
Box Filters	< 20 %	< 50 %	85 % or better		MERV 9	
	< 20 %	50 % -64 %	85 % or better		MERV 10	
Lead Dust, Flour, Auto Fumes, Welding Fumes	< 20 %	65 % -79 %	85 % or better	FPR 7	MERV 11	on
	< 20 %	80 % - 90 %	90 % or better		MFRV 1	on
Commercial Filters	< 75 %	90 % or better	90 % or better	FPR 10	MERV 1	
	75 % - 84 %	90 % or better	90 % or better		MERV 14	
Bacteria, Smoke, Sneezes	85 % - 94 %	95 % or better	90 % or better		MERV 15	
	95 % or better	95 % or better	90 % or better		MERV 16	
HEPA (High-Efficiency Particulate Air filte & ULPA (Ultra Low Particulate Air filter)	99 % or better	99 % or better	99.97%		MERV 17	
	99 % or better	99 % or better	99.997%		MERV 18	
Viruses, Carbon Dust, <.30 pm	99 % or better	99 % or better	99.9997%		MERV 19	
	99 % or better	99 % or better	99.99997%		MERV 20	

HVAC filters have different MERV ratings based on how well they remove particles from the air

Common fiberglass filters (you can see through) have a MERV rating = 2

Pleated filters have folds. The more folds, the more surface area available for air to pass through. MERV rating = 8 to 13

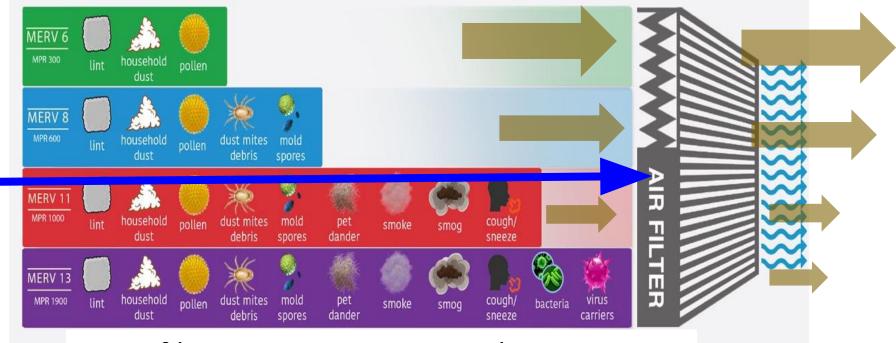
High Efficiency Particulate Air (HEPA) Filtration

Is a standard for filters that indicates very high capture rate for fine and ultrafine particles

HEPA filters are used in

Portable room air filtration units

Some whole house heating and air conditioning systems



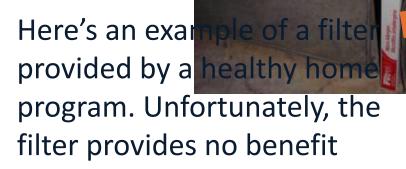
Many vacuum cleaners have HEPA filters on their exhaust to capture any particles

When selecting replacement filters to offer clients, weigh the benefits and costs for different MERV ratings

Less filtration = More Air = Low pressure

More filtration = Less Air = Higher pressure

Before upgrading filters there are important things to consider


Higher rating does help filter out important particles and allergens from the air, but studies in actual homes show A LOT of variation. Factors to consider:

- Can system handle higher back pressure
- Actual system runtime per hour
- Properly sized and fitted seal
- Filter media and thickness

When furnace filters important to make seated and some place over the filter not, the air will by making it useless

Exercise:

You're visiting the Johnson's home and ask about checking their furnace filter. They remove the panel and this is what they show you.

What issue do you observe?

What actions will you recommend?

Portable Room Air Cleaners

Portable room cleaners can work well for removing airborne particles, fibers, pollen, molds, allergens, smoke and debris.

- \cdot Cost = \$200 \$1000
- Replacement Filters = \$50 \$200
- Different models have combinations of pre-filters, charcoal filters, HEPA filters, and charged plates (ionizers)

Avoid Ionizers and electronic "purifiers"

But you must be careful when purchasing. Not all devices work the same or as well.

Portable Room Air Cleaners - Do your research

- Look for units that use HEPA filters
- Charcoal filters can be useful for odors
- Units must be placed away from walls and corners to be effective

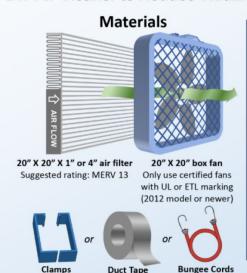
Portable room filtration units should be purchased based on their Clean Air Delivery Rate (CADR) for smoke, dust and pollen. The CADR is based on the approximate area and volume of the room the device will work best in.

Download EPA guide_to_air_cleaners_in_the_home by clicking herehttps://www.dropbox.com/s/0zcvcf7zpau6qg3/guide to air_cleaners_in_the_home_2nd_edition.pdf?dl=1

Rated Voltage:	120V~
Rated Frequency:	60HZ
Rated Power:	45W
CADR(Smoke):	280CFM
CADR(Dust):	280CFM
CADR(Pollen):	280CFM
Noise:	29-53db

Here are some interesting ways to build your own simple portable room air filtration unit

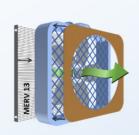
- Can use one filter 1" thick or even 4" thick
- There are 1, 3 and 4 filter designs
- Studies show fan does not overheat when operated with filters attached



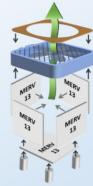
How to build a portable filtration unit: https://www.youtube.com/watch?v=H2YELPNsImk

Many organizations are offering summaries and designs, and new research about effectiveness of box fan filters

DIY Air Cleaner to Reduce Wildfire Smoke Indoors: Basic Design


Assembly

- 1. Attach the air filter to the back of the box fan using either clamps, duct tape or bungee cords.
- 2. Check the filter for the direction of the air flow (marked on the side of the filter).
- 3. Replace filters when dirty.


Learn about box fan safety tips:

https://www.epa.gov/air-research/research-div-air-cleaners-reduce-wildfire-smoke-indoors#FAQ

DIY Air Cleaner Designs: Beyond the Basic

Ways to Improve Effectiveness:

- Add a cardboard shroud (no-cost improvement)
- Use thicker filters (4" rather than 1" MFRV 13
- Use multiple filters (2-5 filter designs)

Kev Reminders:

- Only use certified fans with UL or ETL marking (2012 model or newer)
- Keep extra filters on hand Replace filters when dirty

Good

- 20" x 20" x 1" or 4" MERV 13 air filter 20" x 20" cardboard shroud
- (cutout the size of the fan blades)
- · Clamps, duct tape, or bungee cords

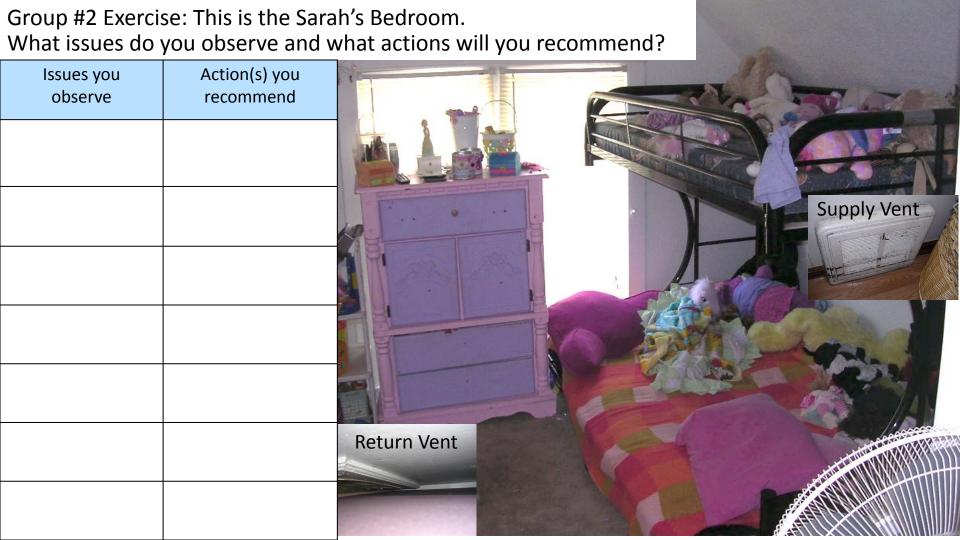
Better

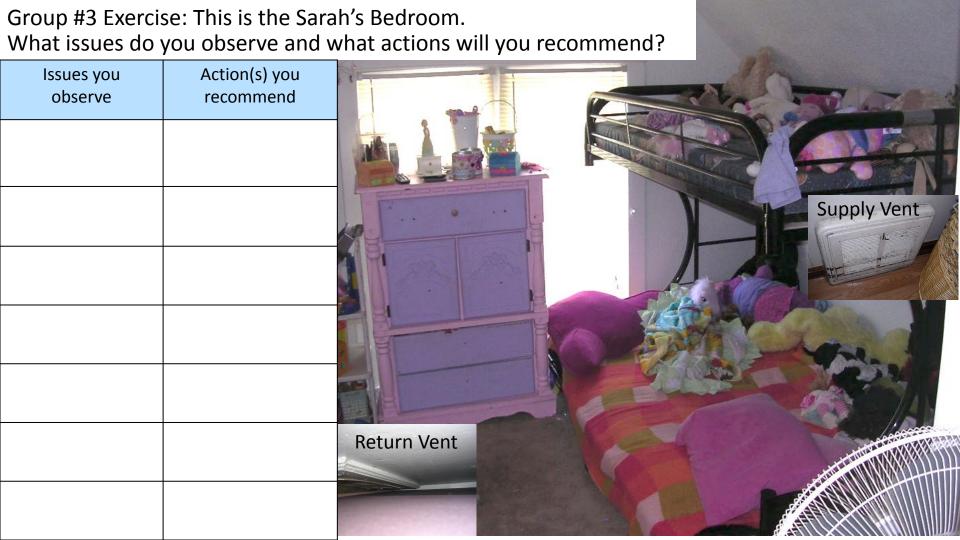
- Additional Supplies: Two - MERV 13 air filters
- · Triangle cardboard cutout for base on top

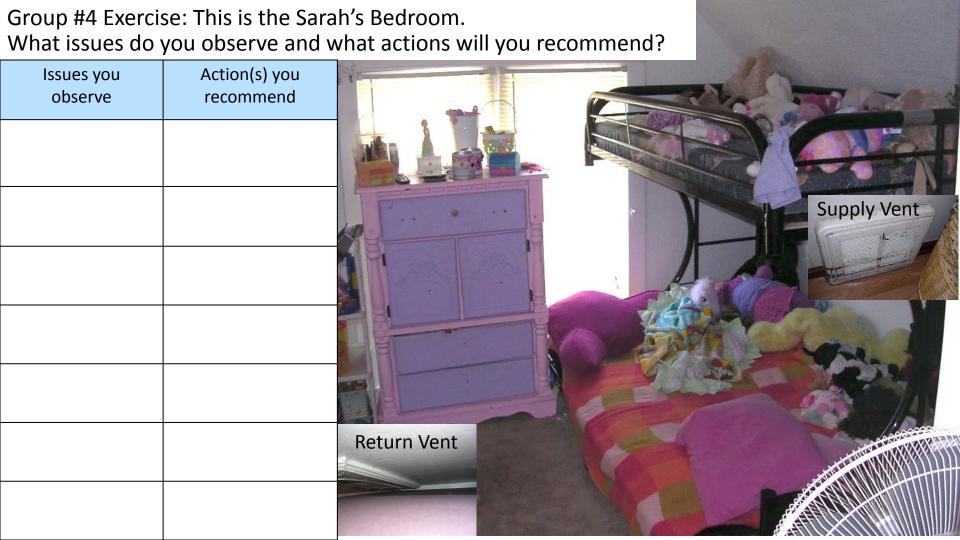
- Four or five MERV 13 air filters
- If using five filter design, use leg supports (e.g., blocks) to allow airflow through bottom

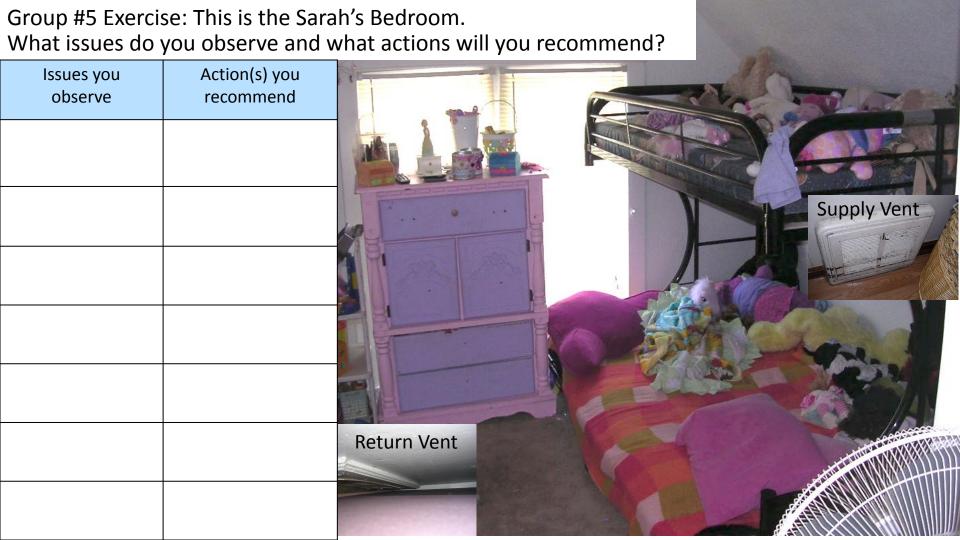
https://www.epa.gov/air-research/research-diy-air-cleaners-reduce-wildfire-smoke-indoors

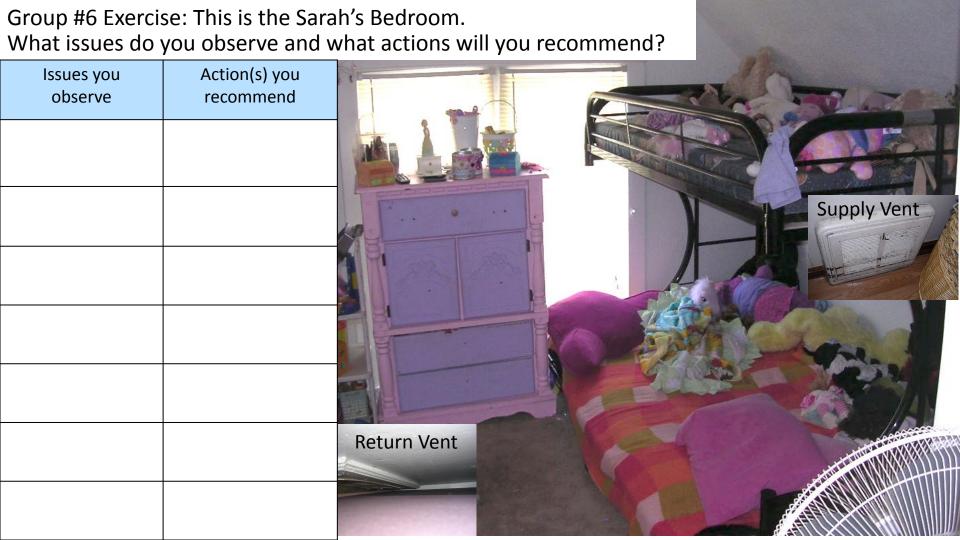
Exercise!: Apply your knowledge

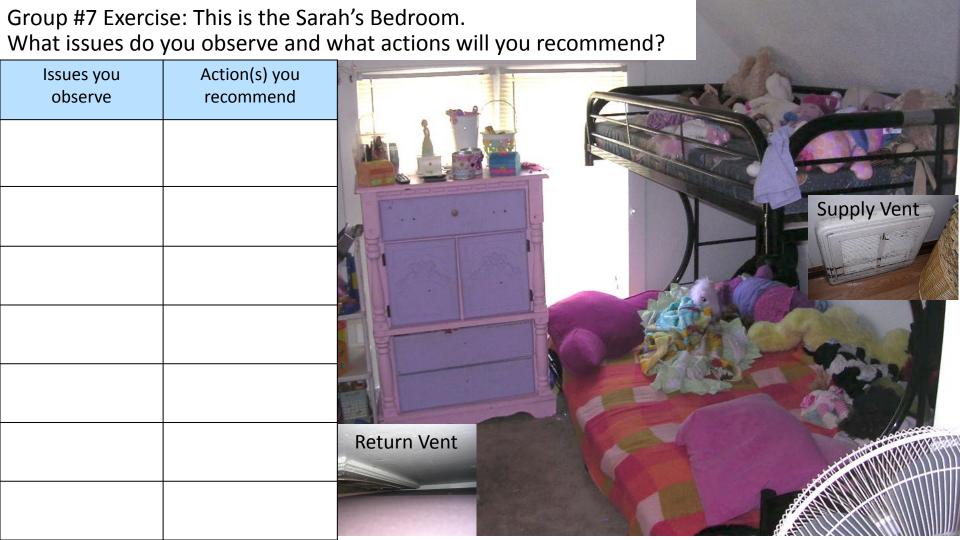

You are visiting the Munson's home. Their daughter Sarah has asthma and is allergic to dust mites, cats and dogs.

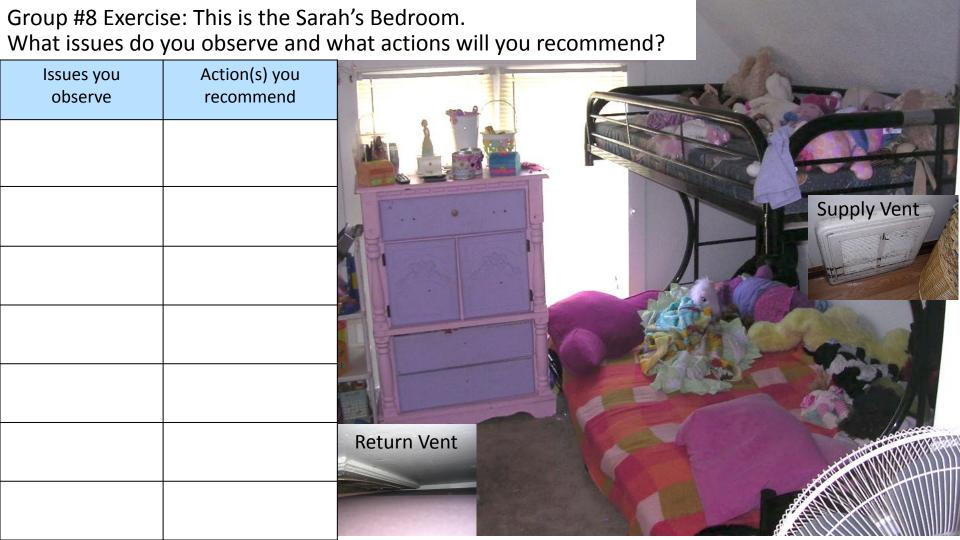

- Work in small groups.
- Review the the photo of Jessica's bedroom
- Discuss possible sources of particles you observe in the room

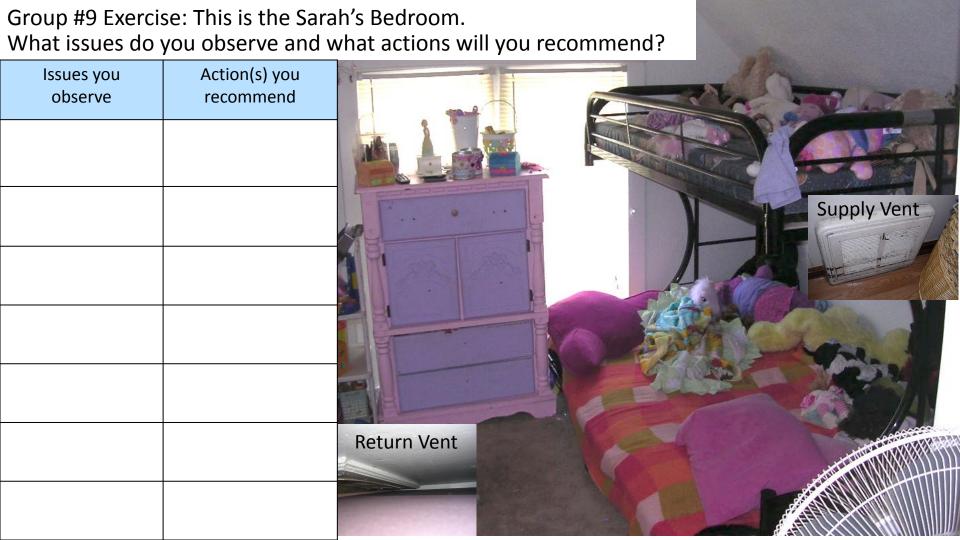

Your breakout room number should match the group number on the exercise slide

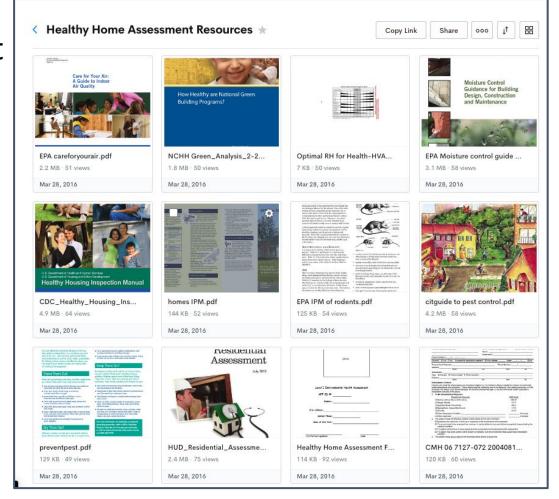



Group #1 Exercise: This is the Sarah's Bedroom. What issues do you observe and what actions will you recommend? Action(s) you Issues you observe recommend regularly wash them Stuffed animals Carpet clean blinds Supply Vent use a hepa vacuum to regularly clean it closed window cabinet blocking window open window will cause allergens to come in fan in front of bed-fan is very dusty stuffed animals Air purifier or a better fan that is able to attach a eturn vent filter on it. Fan looks dirty Return Vent vacuum hepa filter or carpet replace with wood floor







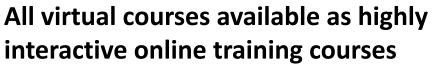


Healthy Home Assessment References & Resources Here:

https://www.healthyindoorstraining.com/healthy-housing-resources

Link to all public domain resources used in class and a whole lot more!

I offer several Healthy Home Training courses


Available courses:

- One-day Healthy Housing Principles
- Healthy Home Principles and Assessment Practice for Educators and Community Health Workers
- Healthy Home Assessment Principles
- Advanced Environmental Measurement
- Healthy Home Evaluator

https://www.healthyindoorstraining.com/

- Zoom training platform
- Using breakout rooms for small group discussions and focused learning exercises
- Using Google slide decks for shared view of presentation slides and exercises

Questions? Thank You!

Download a copy of the presentation by clicking this link:

https://www.dropbox.com/scl/fi/umkt9eu6rwg8r1gn9p34e/Asthma-Management-and

-Home-Ventilation.pdf?rlkey=53q7s5j1wc4zsko18gnekx34w&st=zx4uf0cx&dl=1

Kevin Kennedy kkennedy 740@gmail.com

https://www.healthyindoorstraining.com/